
Agile Manifesto

RUP Best Practises

Are there software
projects to which
agile processes do

not apply?

Introduction

To my person

Daniel Tobler

Software Architect

Realtime and Embedded Systems

Zühlke Engineering AG

How did I get in contact with Agility?

Started an agile project in 2000 without
knowing about agility

No process (like RUP) --> we are bad

Educated by Ken Schwaber at OOPSLA 2002

CSM since 2006

Climbing strategies

Mount Everest

Uetliberg

Every project requires another process

Where processes differ

Base on different values

Agile

Individuals and interactions over
processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

Plan-Driven

Develop Software iteratively

Manage requirements

Use component-based architectures

Visually model software

Verify Software quality

Control changes to Software

Define different level of Ceremony

Low

High

Number of control elements (e.g. documents)

Quality of the control elements

Every Process requires Discipline, but

Self Discipline

Sport/Training

We do this because it helps us

Bases on own experience

Effective way to gain
experience

Follow a Plan

Military

Follow that guideline and you will succeed

Standards and templates

Effective way to spread
knowledge

Plan-Driven Processes (RUP)

Nature

Highly Iterative

Result Oriented

Every iteration delivers potential
shippable software

Software Architecture centric

Risk driven

Focus on technology and guidelines

Phases

Many Templates and Guidelines

RUP on 1 DVD

Most of the content not useful, no
practical background (rubbish)

Needs to be tailored

Advantages

Reducing the risks is highlighted first

Embedded: Getting the adequate
Hardware is always a risk

Performance is an issue

Architecture must be proven first

Focus on Software Architecture

Inception and Elaboration

RUP Light: Relatively simple to introduce
and offers good guidelines

Disadvantages

No Team
Project Manager is responsible

Software Architect is responsible

Theory and Practice often different

Long iterations (undiscoverable)

Software Architect as god

Project runs as waterfall since process is not understood

Process defined, but nobody "lives" it

RUP as "lived" at Zühlke

Agile Processes (Scrum)

Nature

Highly iterative

Result Oriented

Documented in a small book

Focus on people

Psychological elements

Cannot be learned from a book

Often combined with XP

Advantages

Team-Involvement

Process improvements

Everybody is responsible

Explicitly at each iteration

RUP defines this as well, but this
fact gets lost among all other
process details (I just say: 1 DVD)

Elements of other processes explicitly allowed

Overtime is distributed more evenly

Disadvantages

Software Architecture may get lost

Weakness in definition of initial phases

Focus only THE ONLY risk: Customer is not satisfied

Scrum/XP Hybrid

Comparison with Decision Factors

Differ using Decision Factors

SizeConsider developers, testers, integrators,
architects, and project managers

Offshore requires more developers.

Criticality

Do not measure the damage the project
causes to the company developing the
software!

The higher the criticality, the more initial
analysis is necessary

Team skills

Level 1: Developers working according a process

Level 2: Developers able to expand and tailor a process

Level 3: Developers knowing the reasons for
certain methodologies

The level has nothing do to with experience

It is not necessary to have only Level 3 developers

Change

Measure for the maturity of the team in the domain

The team already develops the
10th tax regulation application

Measure for the complexity of the architecture

The requirements for a nuclear
power plant must have different
quality than those of a lunch
ordering web application

The architecture of a lunch
ordering web page is not that
complex because it uses a
standard architecture.

Culture
A.) How well the developers accept an agile process

B.) How well the management/customer
accepts an agile process

Distinguish between both!

Size

Being used for large projects

But successful?

What is successful at large projects?

Force direct communication

Plan enough time for communication

Both processes "work" on large processes

Criticality

FDA/TÜV trust V-Modell, etc.

Prototype with an agile process, final
product with a formally accepted process

Critical products are often embedded

Embedded Projects require coordination
with Hardware and Mechanics

Coordination Points

Mechanics and especially Hardware
cannot be developed iteratively

Hardware must support defined Software Architecture

First iterations focus on concepts, not on
customer benefit

No standard architecture

The more coordination points the longer the initial phase

Critical products can be developed with
an agile approach

Team skills

Level 1 developers need more guidance

More guidelines for Level 1 developers

But

Play piano-beginners better with more conductors?

Project Manager

= Team Leader

= Technical Project Manager (Architect)

under permanent stress

Tailoring

Overwhelming documentation

requires experience

Tailoring done by committee

tailoring for biggest possible project

but tailoring for every project
required! Climbing strategies

Committee is responsible for
improvement exclusively

Post-Mortem retrospectives

Dou you really want to make a project
with only level 1 developers?

Do you really want to make a project with
only level 3 developers?

If you have mostly level 1 developers

Use a few useful Guidelines from RUP

Then move responsibility to the
developers to form a team

Change

If requirements do not change, waterfall is sufficient!

Theoretical issue

There are projects where more
requirements must be collected up front

to define the architecture

to satisfy regulatory issues

fixed price contracts

Sad, but fact

RUP offers initial phases
Inception

Elaboration

Collect high level requirements if you
have the chanceBut do not detail them

Always reduce risks first

Not satisfying the customer is a risk too

For some applications this is the highest risk

For some applications it is not

It is good idea to plan initial iterations

Culture

Yes, there are developers that do not want RUP

Yes, there are developers that do not want Agility

You cannot convince the majority

Conclusion

No agile projects

If the developers do not want!

If management does not support it at all!

If requirements do not change often

Theoretical issue

Almost only theoretical reasons

But profit from plan driven processes

Focus on the architecture

Reduce risks in first iterations

Not satisfying your customer
might not be your highest risk

Focus on useful templates

Estimations

Software Architecture Documentation

etc.

Take advantage of RUP Phases
Inception

Elaboration

Agile vs plandriven SW Processes.mmap - 30.09.2008 -


